Generating single-stranded DNA (ssDNA) donors using Streptavidin-coupled Dynabeads

The donor for homology-dependent repair is generated by PCR using one standard and one 5' biotinylated primer (IDT). In our hands, Phusion High-Fidelity DNA Polymerase (NEB) works well. PCR clean-up steps are not required.

Prepare Dynabeads

- 1. Resuspend the Dynabeads M-280 streptavidin (ThermoFisher) by vortexing for 1 min.
- 2. Dispense resuspended Dynabeads into a 1.5 ml tube. Use a volume equivalent to the volume of the PCR reaction to be purified.
- 3. Add an equal volume of 2× washing buffer (10 mM Tris-HCl [pH 7.5], 1 mM EDTA, 2 M NaCl) to the Dynabeads then vortex 5 sec.
- 4. Place the tube on a magnetic stand for 1 min, then discard the supernatant.
- 5. Remove the tube from the magnetic stand and resuspend the washed Dynabeads in 2× washing buffer using a volume equivalent to the volume of the PCR reaction.

Immobilize DNA

- 1. Add the crude PCR reaction to the washed Dynabeads.
- 2. Incubate for 30 min at room temperature with gentle rotation.
- 3. Place the tube in the magnetic stand for 3 min, remove the supernatant containing unbound DNA (Sup 1) to a new tube.
- 4. Wash the Dynabeads twice with 500 μ l 1 \times washing buffer, mix by pipetting up and down, then collect the beads in the magnetic stand for 2 min.
- 5. Remove the washing buffer from above the beads.

Denature double-stranded DNA

- 1. Add 200 μ I 0.1 M NaOH to beads, incubate for 5 min at room temperature to denature the biotinylated PCR product .
- 2. Put tube back in magnetic stand for 3 min, then remove the supernatant (Sup 2) to a new tube. Sup 2 should contain the non-biotinylated DNA strand.
- 3. Add equal volume of $2 \times$ PK buffer (200 mM Tris-HCl [pH7.5], 300 mM NaCl, 25 mM EDTA, 2% w/v SDS) to Sup 2 to neutralize.
- 4. Wash the Dynabeads twice with 500 µl 1× washing buffer.
- 5. Resuspend the Dynabeads in 200 µl 10 mM EDTA (pH 8.2).

Release the biotinylated DNA strand

- 1. Incubate resuspended Dynabeads at 65°C for 5 min.
- 2. After incubation, put tube back in magnetic stand for 3 min. Collect the supernatant (Sup 3) in a new tube.

Analysis and gel purification of ssDNA donor

- 1. Add 3 volumes ice-cold absolute ethanol (Decon Laboratories) and 1 μ l GlycoBlue coprecipitant (Invitrogen) to each supernatant (Sup 1, Sup 2, and Sup3). Incubate on ice for 1 h, then centrifuge at 15,000× g at 4°C for 30 min. Wash DNA pellet with 70% (v/v) ethanol, centrifuge again at 15,000× g at 4°C for 5 min to collect pellet. Air dry pellet at room temperature for 5 min. Dissolve pellet in 10 μ l dH₂O.
- 2. Add 2 μ I 6× Orange G loading buffer (2.5% [w/v] Ficoll-400, 0.15% [w/v] Orange G) to each pellet, then analyze 12 μ I of each sample by agarose gel electrophoresis (1% [w/v] UltraPure [Invitrogen] agarose, 1× TAE buffer [40 mM Tris (pH 8.3), 20 mM acetic acid, 1 mM EDTA] plus 1 μ g/ μ I ethidium bromide [OmniPur]) in 1× TAE buffer at 100 V for 40 min.
- 3. Excise agarose bands containing the full-length Sup 2 and Sup 3 products. ssDNA will migrate faster than double-stranded DNA of the same length: e.g., a 2,332 bp ssDNA donor runs as if it were ~1 kbp. Extract ssDNA from agarose gel slice using QIAquick Gel Extraction kit (QIAGEN), eluting the ssDNA into water. Store ssDNA donors at -20°C.